

TKHP® series

**High-Performance cable carriers
for long travel lengths and
high additional loads**

Trademarks are legally protected for the TSUBAKI KABELSCHLEPP GmbH
as a national or international registration in the following countries:
tsubaki-kabelschlepp.com/trademarks

1 Aluminum stays available in **1 mm width sections**

2 Plastic chain link plates

3 Quick and easy opening to the inside or outside for cable laying

4 Cable-friendly interior – no interfering edges

5 Fixable dividers

6 Dividers and subdivision for separating the cables

7 Replaceable glide shoes for increased service life in gliding application

8 Robust, multiple stop system

9 End connectors made of seawater-resistant stainless steel

10 With integrated roll for standard guide channels

11 Easy replacement of chain links within the cable carrier

12 With roller damping

Features

- » Massive, enclosed, stain-repellent stop system
- » Massive sidebands through robust double fork-bracket-construction
- » Sidebands easy to assemble
- » Reinforced symmetrically arranged pin bore connection for better force transmission
- » Integrated noise damping
- » Quick and easy opening to the inside or outside for cable laying
- » Soil-resistant outer contour
- » Easy change of components
- » Maintenance-free
- » Linear force curve in the sideband
- » Quiet and low-wear operating through polygon-optimized contour and radii
- » Reduce drive power through less friction

Very smooth running of the roller system due to almost continuous running surface.

A non-slip structure on the running surface prevents one-sided roller wear after a standstill.

Roller chain for travel distances up to 1500 m.

RSD version with roller damping to reduce noise and wear by up to 50%.

		Type	PROTUM® series	Opening variant	Stay variant	h_f [mm]	h_G [mm]	B_f [mm]	B_k [mm]	Bi-grid [mm]	t [mm]	KR [mm]	Additional load ≤ [kg/m]	Cable-d _{max} [mm]
	K series													
	UNIFLEX Advanced series	TKHP85		RMF	58	84	100 - 800	154 - 854	1	85	240 - 400	60	46	
	M series	TKHP90		RMF	92	117	100 - 800	170 - 870	1	90	250 - 500	100	73	
	TKHP® series	TKHP85-R / TKHP85-RSD		RMF	58	84.5	100 - 800	154 - 854	1	85	240 - 400	60	46	
	XL series	TKHP90-R / TKHP90-RSD		RMF	92	117.5	100 - 800	170 - 870	1	90	250 - 500	100	73	
	TKR series													
	TKA series													
	UAT series													

Unsupported arrangement			Gliding/Rolling arrangement			Inner Distribution				Movement		Page
Travel length ≤ [m]	v_{max} ≤ [m/s]	a_{max} ≤ [m/s 2]	Travel length ≤ [m]	v_{max} ≤ [m/s]	a_{max} ≤ [m/s 2]	TS0	TS1	TS2	TS3	vertical hanging or standing or lying on the side	rotating arrangement	
5.9	5	20	200	5	2.5	•	•	-	-	•	-	470
13.5	8	20	-	-	-	•	•	-	-	•	-	476
-	-	-	1200	5	50	•	•	-	-	•	-	482
-	-	-	1500	10	50	•	•	-	-	-	-	488
UAT series			TKA series			TKR series				QUANTUM® series		TKHP® series
PROTUM® series			K series			M series				XL series		UNIFLEX Advanced series

TKHP85

PROTUM®
seriesK
seriesUNIFLEX
Advanced
seriesM
seriesTKHP®
seriesXL
seriesQUANTUM®
seriesTKR
seriesTKA
seriesUAT
seriesPitch
85 mmInner height
58 mmInner widths
100 - 800 mmBending radii
240 - 400 mm

Stay variants

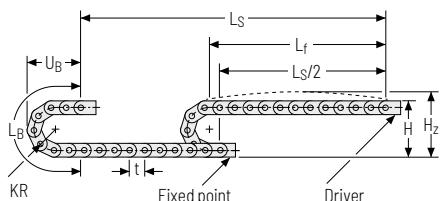
Aluminum stay RMF

page 470

Frame stay, solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » **Inside/outside:** Threaded joint easy to release.

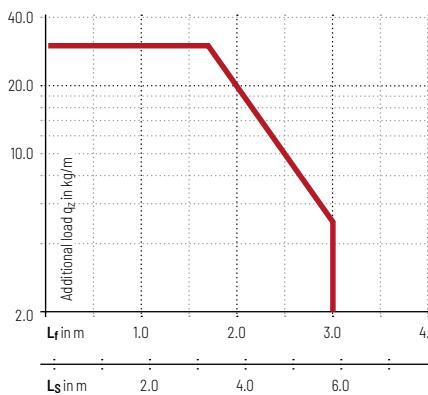
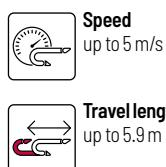
TOTALTRAX® complete systems


Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

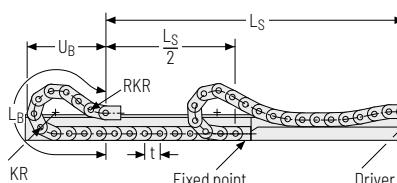
TRAXLINE® cables for cable carriers

Hi-flex electric cables which were specially developed, optimised and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline.

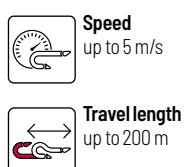
Unsupported arrangement

KR [mm]	H [mm]	Hz [mm]	L_B [mm]	U_B [mm]
240	574	704	930	300
300	694	824	1120	360
350	794	924	1270	410
400	894	1024	1430	460


Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.


Intrinsic cable carrier weight $q_K = 10 \text{ kg/m}$. For other inner widths, the maximum additional load changes.

Gliding arrangement | GO module with chain links optimized for gliding

KR [mm]	H [mm]	GO module RKR	L_B [mm]	U_B [mm]	qz max [kg/m]
240	252	400	2235	983	60
300	252	400	2830	1224	60
350	252	400	3255	1393	40
400	252	400	3765	1601	20

The gliding cable carrier must be guided in a channel. See p. 866.

The GO module mounted on the driver is a defined sequence of adapted KR/RKR link plates.

Glide shoes must be used for gliding applications.

PROTUM® series

K series

UNIFLEX Advanced series

M series

TKHP® series

XL series

QUANTUM® series

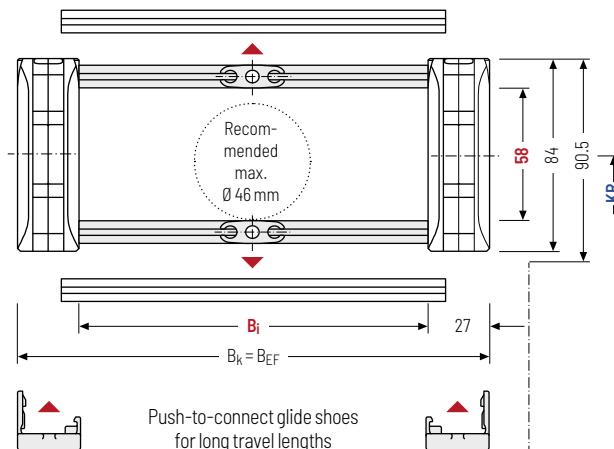
TKR series

TKA series

UAT series

Aluminum stay RMF - frame stay solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Available customized in **1 mm grid**.
- » **Inside/outside:** Threaded joint easy to release.



 Stay arrangement on every 2nd chain link, **standard unsupported (HS: half-stayed)***

 Stay arrangement on each chain link (VS: **fully-stayed**)

 1mm B: 100 – 800 mm in **1mm width sections**

* Gliding arrangement: Inner radius fully-stayed, Outer radius half-stayed.

 The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k = \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

h_i [mm]	h_g [mm]	$h_{g'}$ [mm]	B_i [mm]*	B_k [mm]	B_{EF} [mm]	KR [mm]	q_k [kg/m]
58	84	90.5	100 – 800	$B_i + 54$	$B_i + 54$	240 300 350 400	6.02 – 13.12

* in 1mm width sections

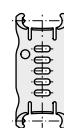
Order example

 TKHP85 Type . 400 B [mm] . RMF Stay variant . 300 KR [mm] - 2125 L_k [mm] . VS Stay arrangement

Divider systems

As a standard, the divider system is mounted on every 2nd chain link on the inside plate.

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (**version A**).

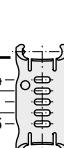
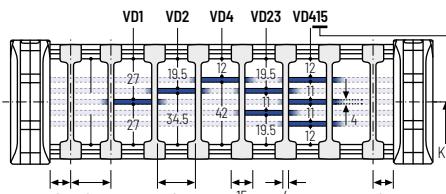

For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (**version B**).

Divider system TSO without height separation

Vers.	a_T min [mm]	a_x min [mm]	a_c min [mm]	a_x grid [mm]	n_T min
A	7.5/10.5*	15	11	-	-
B	7.5/10.5*	15	11	5	-

* With glide shoes

The dividers can be moved within the cross section (version A) or fixed (version B).

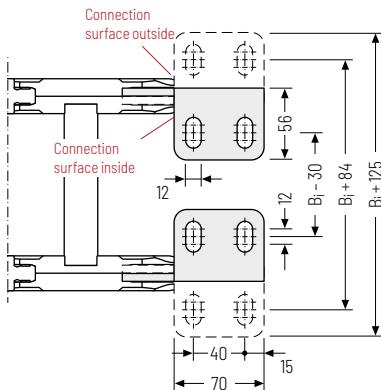
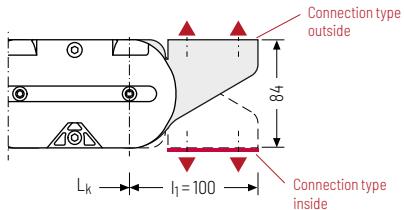
Divider system TS1 with continuous height separation

Vers.	a_T min [mm]	a_x min [mm]	a_c min [mm]	a_x grid [mm]	n_T min
A	7.5/10.5*	15	11	-	2
B	7.5/10.5*	15	11	5	2

* With glide shoes

The dividers can be moved within the cross section (version A) or fixed (version B).

Order example

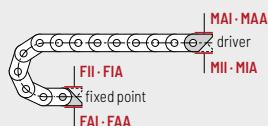


	TS1	.	A	.	3	-	VD1	⋮
Divider system	Version					-	Height separation	

Please state the designation of the divider system (**TS0, TS1,...**), the version, and the number of dividers per cross section [n_T].

When using divider systems with height separation (**TS1**), please additionally state the position (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

End connectors – steel short (standard)

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.


▲ Assembly options

TKHP® series

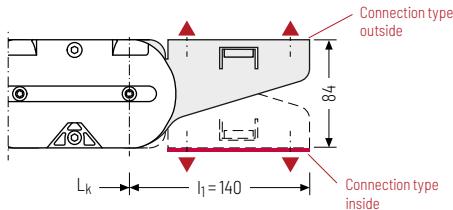
Connection point	Connecting surface
F - fixed point	A - connecting surface outside
M - driver	I - connecting surface inside

XL series

Connection type
A - threaded joint outside (standard)
I - threaded joint inside

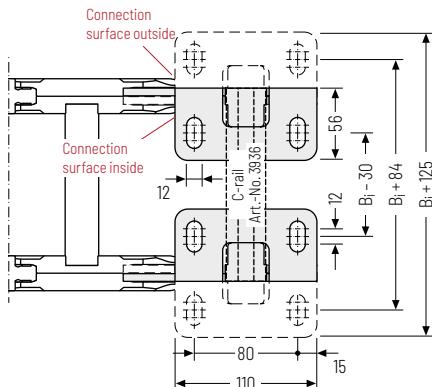
Quantum® series

End connector	Connection point	Connection type	Connecting surface
Steel	F	A	I
Steel	M	A	I


We recommend the use of strain reliefs at the driver and fixed point. See from p. 924.

TKA series

UAT series

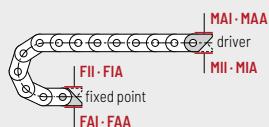

End connectors LF - steel long

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Use only with C-rail.

▲ Assembly options

Connection point


F - fixed point
M - driver

Connecting surface

A - connecting surface outside
I - connecting surface inside

Connection type

A - threaded joint outside (standard)
I - threaded joint inside

Order example

	Steel LF	F	A	I
	End connector	Connection point	Connection type	Connecting surface

PROTUM® series

K series

UNIFLEX Advanced series

M series

TKHP® series

XL series

QUANTUM® series

TKR series

TKA series

UAT series

Additional product information online

Installation instructions, etc.:
Additional info via your smartphone or
check online at
[tsubaki-kabelschlepp.com/
downloads](http://tsubaki-kabelschlepp.com/downloads)

Configure your cable carrier here:
online-engineer.de

TKHP90

PROTUM®
seriesK
seriesUNIFLEX
Advanced
seriesM
seriesTKHP®
seriesXL
seriesQUANTUM®
seriesTKR
seriesTKA
seriesUAT
seriesPitch
90 mmInner height
92 mmInner widths
100 - 800 mmBending radii
250 - 500 mm

Stay variants

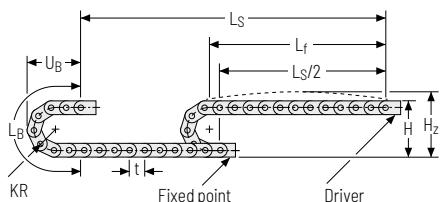
Aluminum stay RMF

.....page 476

Frame stay, solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » **Inside/outside:** Threaded joint easy to release.

TOTALTRAX® complete systems


Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were specially developed, optimised and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline.

Unsupported arrangement

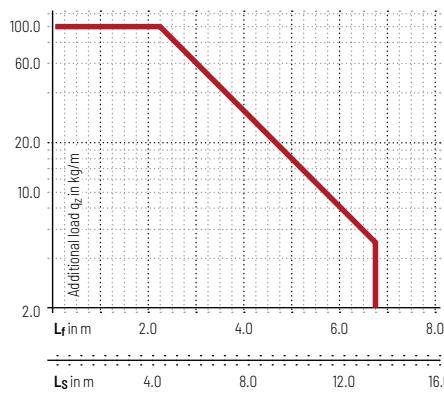
KR [mm]	H [mm]	Hz [mm]	L_B [mm]	U_B [mm]
250	675.5	860	965	510
310	795.5	980	1154	570
360	895.5	1080	1311	620
500	1175.5	1360	1751	680

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 10 \text{ kg/m}$. For other inner widths, the maximum additional load changes.

Speed
up to 8 m/s


Acceleration
up to 20 m/s^2

Travel length
up to 13.5 m

Additional load
up to 100 kg/m

PROTUM®
series

K
series

UNIFLEX
Advanced
series

M
series

TKHP®
series

XL
series

QUANTUM®
series

TKR
series

TKA
series

PROTUM® series

K series

UNIFLEX Advanced series

M series

TKHP® series

XL series

QUANTUM® series

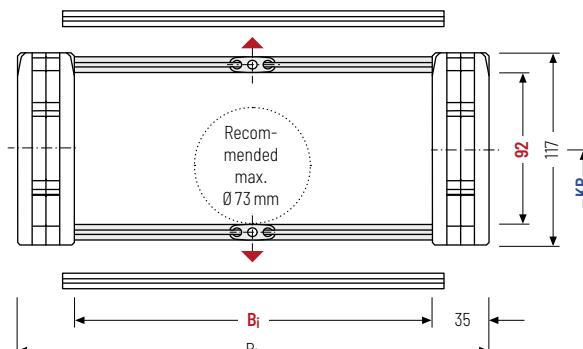
TKR series

TKA series

UAT series

Aluminum stay RMF - frame stay solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Available customized in **1 mm grid**.
- » **Inside/outside:** Threaded joint easy to release.



 Stay arrangement on every 2nd chain link, **standard unsupported (HS: half-stayed)***

 Stay arrangement on each chain link (**VS: fully-stayed**)

 1 mm B_i 100 – 800 mm in **1 mm width sections**

* Gliding arrangement: Inner radius fully-stayed, Outer radius half-stayed.

 The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k = \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

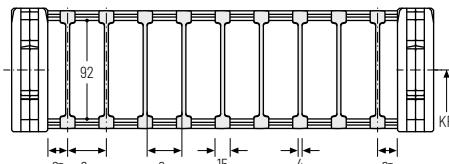
h _i [mm]	h _G [mm]	B _i [mm]*	B _k [mm]	B _{EF} [mm]	KR [mm]	q _k [kg/m]
92	117	100 – 800	B _i + 70	B _i + 70	250 310 360 500	10.37 – 17.47

* in 1 mm width sections

Order example

 TKHP90 Type . 400 B_i [mm] . RMF Stay variant . 310 KR [mm] - 2700 L_k [mm] . VS Stay arrangement

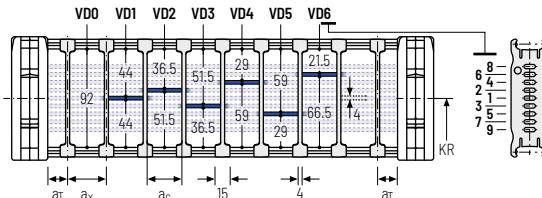
Divider systems

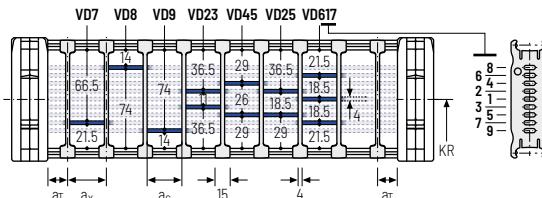

As a standard, the divider system is mounted on every 2nd chain link on the inside plate.

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (**version A**).

For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (**version B**).

Divider system TSO without height separation


Vers.	Δt min [mm]	Δx min [mm]	Δc min [mm]	Δx grid [mm]	ΔT min
A	7.5	15	11	-	-
B	10	15	11	5	-

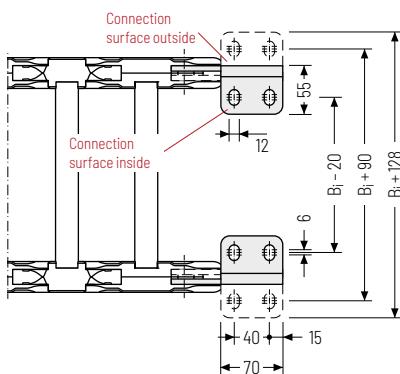
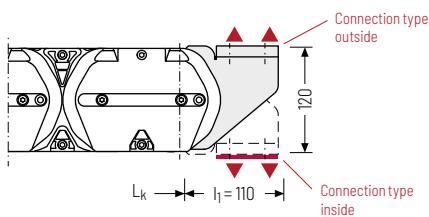

The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.	Δt min [mm]	Δx min [mm]	Δc min [mm]	Δx grid [mm]	ΔT min
A	7.5	15	11	-	-
B	10	15	11	5	-

The dividers can be moved within the cross section (version A) or fixed (version B).

Order example

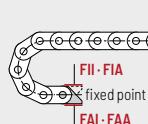


TS1 . A . 3 - VD1
 ...
 - VD3
 Height separation

Please state the designation of the divider system (**TS0, TS1,...**), the version, and the number of dividers per cross section [n_T].

When using divider systems with height separation (TS1), please additionally state the position (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

End connectors – steel short (standard)

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.


▲ Assembly options

TKHP® series

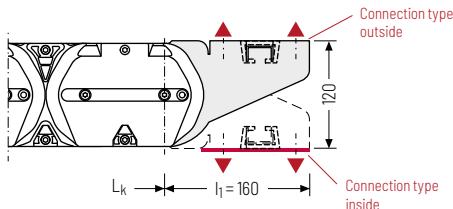
Connection point	Connecting surface
F - fixed point	A - connecting surface outside
M - driver	I - connecting surface inside

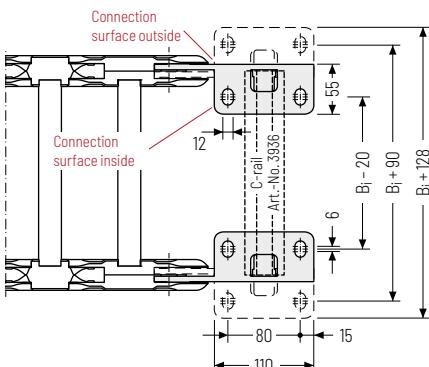
Connection type

A - threaded joint outside (standard)
I - threaded joint inside

Order example

	Steel	F	A	I
	Steel	M	A	I


End connector Connection point Connection type Connecting surface


We recommend the use of strain reliefs at the driver and fixed point. See from p. 924.

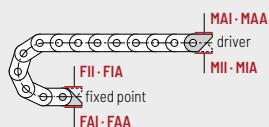
End connectors LF - steel long

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Use only with C-rail.

▲ Assembly options

Connection point


F - fixed point
M - driver

Connecting surface

A - connecting surface outside
I - connecting surface inside

Connection type

A - threaded joint outside (standard)
I - threaded joint inside

Order example

	Steel LF	F	A	I
	End connector	Connection point	Connection type	Connecting surface

Installation instructions, etc.:
Additional info via your smartphone or
check online at
[tsubaki-kabelschlepp.com/
downloads](http://tsubaki-kabelschlepp.com/downloads)

Configure your cable carrier here:
online-engineer.de

TKHP85-R

TKHP85-RSD

High-Performance cable carrier with integrated roller

Pitch
85 mm

Inner height
58 mm

Inner widths
100 - 800 mm

Bending radii
240 - 400 mm

Stainless steel ball bearings with application-specific lubrication and plastic rollers ensure quiet and smooth operation. Integrated, low-wear damping systems minimize the mechanical load for the entire system.

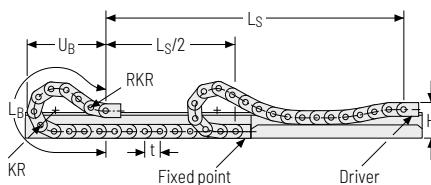
The cable carrier type TKHP85-RSD (Shock Damping) uses roller damping. The rollers of the RSD variant are damped when they pass over each other, which reduces both the mechanical load and the noise pollution when they roll over by up to 50 %.

The use of roller damping is not always necessary. An undamped cable carrier system can also be used for low-speed applications.

- » TKHP85-R with rollers
- » TKHP85-RSD with rollers and shock absorber
- » suitable for all long travel applications
- » quiet and low-vibration operation
- » space-saving and cost-optimized
- » long service life – low maintenance
- » easy access to rollers

- » minimized loads on cable carrier and cables
- » low push and pull forces
- » high travel speed and acceleration
- » large additional loads possible
- » retrofit of existing systems
- » exchange other makes up to 100 %
- » integration of existing guide channels

Stay variants



Aluminum stay RMF page 482

Frame stay, solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » **Inside/outside:** Threaded joint easy to release.

Rolling arrangement | Cable carrier with integrated roller

KR [mm]	H [mm]	G0 module RKR [mm]	L_B [mm]	U_B [mm]	q_z max [kg/m]
240	252	400	2235	983	60
300	252	400	2830	1224	60
350	252	400	3255	1393	40
400	252	400	3765	1601	20

Speed
up to 5 m/s

Acceleration
up to 50 m/s²

Travel length
up to 1200 m

Additional load
up to 60 kg/m

The rolling cable carrier must be guided in a channel.
See p. 866.

The G0 module mounted on the driver is a defined sequence of 4 adapted KR/RKR link plates.

PROTUM®
series

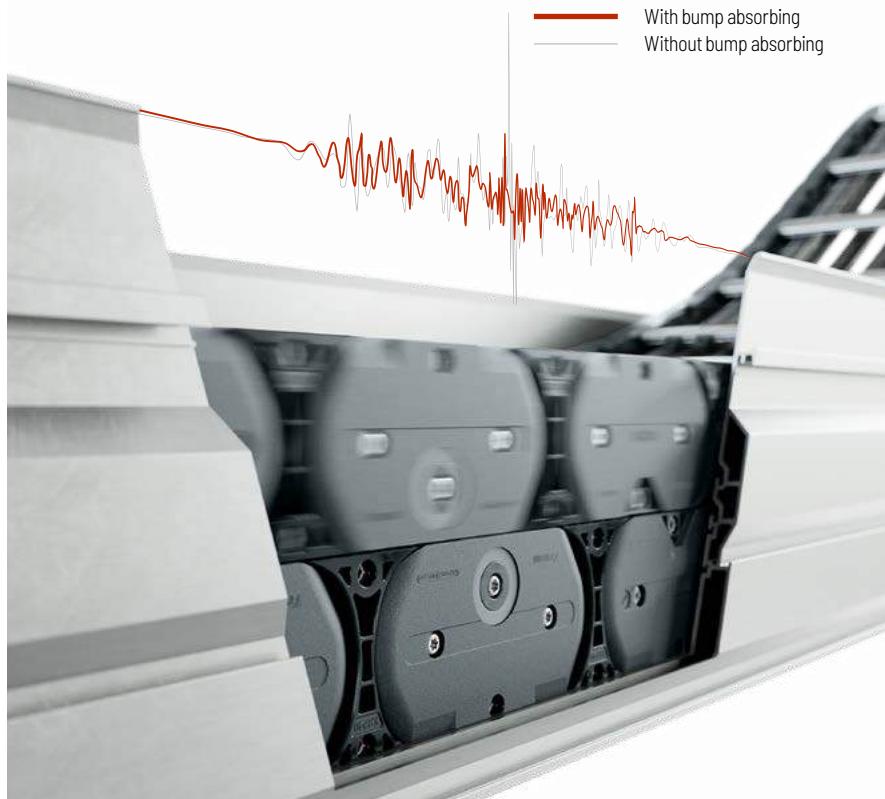
K
series

UNIFLEX
Advanced
series

M
series

TKHP®
series

XL
series


QUANTUM®
series

TKR
series

TKA
series

UAT
series

Our technical support can provide help for rolling arrangements:
technik@kabelschlepp.de

PROTUM® series

K series

UNIFLEX Advanced series

M series

TKHP® series

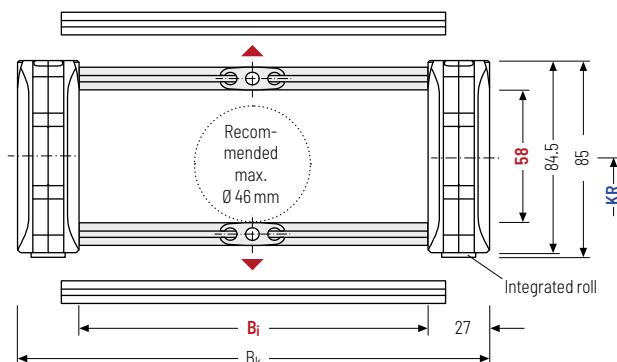
XL series

QUANTUM® series

TKR series

TKA series

UAT series


Aluminum stay RMF -

frame stay solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Available customized in **1 mm grid**.
- » **Inside/outside:** Threaded joint easy to release.

1mm B: 100 – 800 mm
in **1mm width sections**

Calculating the cable carrier length

Cable carrier length L_k

$$L_k = \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

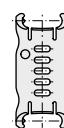
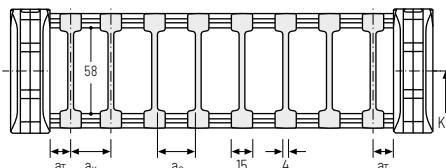
	h_i [mm]	h_G [mm]	h_G' [mm]	B_i [mm]*	B_k [mm]	KR [mm]	q_k [kg/m]
	58	84.5	85	100 – 800	$B_i + 54$	240 300 350 400	6.02 – 13.12

* in 1mm width sections

Order example

TKHP85-R Type . **400** B [mm] . **RMF** Stay variant . **300** KR [mm] - **2125** L_k [mm] . **VS** Stay arrangement

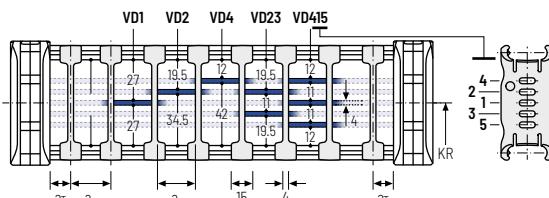
Divider systems



As a standard, the divider system is mounted on every 2nd chain link on the inside plate.

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (**version A**).

For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (**version B**).

Divider system TSO without height separation


Vers.	a_T min [mm]	a_x min [mm]	a_c min [mm]	a_x grid [mm]	n_T min
A	7.5	15	11	-	-
B	7.5	15	11	5	-

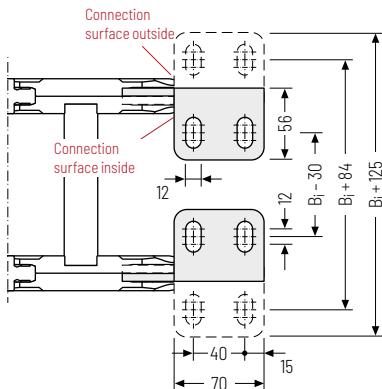
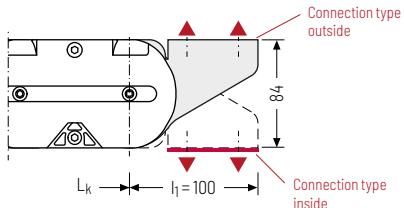
The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation

Vers.	a_T min [mm]	a_x min [mm]	a_c min [mm]	a_x grid [mm]	n_T min
A	7.5	15	11	-	2
B	7.5	15	11	5	2

The dividers can be moved within the cross section (version A) or fixed (version B).

Order example



	TS1	.	A	.	3	-	VD1	⋮
Divider system	Version					-	Height separation	

Please state the designation of the divider system (**TS0, TS1,...**), the version, and the number of dividers per cross section [n_T].

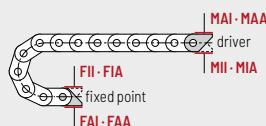
When using divider systems with height separation (**TS1**), please additionally state the position (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

End connectors – steel short (standard)

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

▲ Assembly options

Connection point


F - fixed point
M - driver

Connecting surface

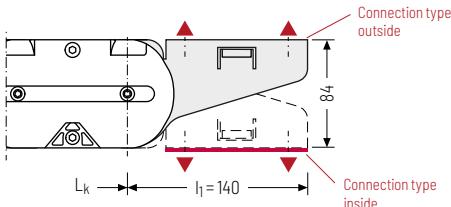
A - connecting surface outside
I - connecting surface inside

Connection type

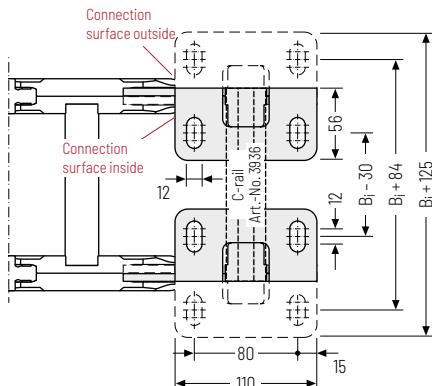
A - threaded joint outside (standard)
I - threaded joint inside

Order example

	Steel	F	A	I
	Steel	M	A	I


End connector Connection point Connection type Connecting surface

We recommend the use of strain reliefs at the driver and fixed point. See from p. 924.

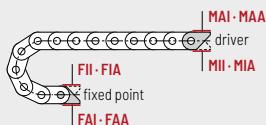

End connectors LF - steel long

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Use only with C-rail.

▲ Assembly options

Connection point


F - fixed point
M - driver

Connecting surface

A - connecting surface outside
I - connecting surface inside

Connection type

A - threaded joint outside (standard)
I - threaded joint inside

Order example

	Steel LF	F	A	I
	End connector	Connection point	Connection type	Connecting surface

PROTUM® series

K series

UNIFLEX Advanced series

M series

TKHP® series

XL series

QUANTUM® series

TKR series

TKA series

UAT series

Additional product information online

Installation instructions, etc.:
Additional info via your smartphone or
check online at
tsubaki-kabelschlepp.com/downloads

Configure your cable carrier here:
online-engineer.de

TKHP90-R

TKHP90-RSD

High-Performance cable carrier with integrated roller

Pitch
90 mm

Inner height
92 mm

Inner widths
100 - 800 mm

Bending radii
250 - 500 mm

Stainless steel ball bearings with application-specific lubrication and plastic rollers ensure quiet and smooth operation. Integrated, low-wear damping systems minimize the mechanical load for the entire system.

The cable carrier type TKHP90-RSD (Shock Damping) uses roller damping. The rollers of the RSD variant are damped when they pass over each other, which reduces both the mechanical load and the noise pollution when they roll over by up to 50 %.

The use of roller damping is not always necessary. An undamped cable carrier system can also be used for low-speed applications.

» TKHP90-R with rollers	» minimized loads on cable carrier and cables
» TKHP90-RSD with rollers and shock absorber	» low push and pull forces
» suitable for all long travel applications	» high travel speed and acceleration
» quiet and low-vibration operation	» large additional loads possible
» space-saving and cost-optimized	» retrofit of existing systems
» long service life - low maintenance	» exchange other makes up to 100 %
» easy access to rollers	» integration of existing guide channels

TKHP®
series

XL
series

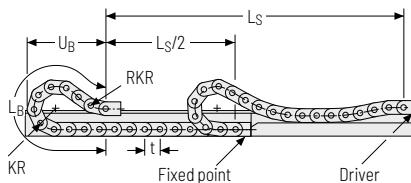
QUANTUM®
series

TKR
series

TKA
series

UAT
series

Stay variants



Aluminum stay RMF page 488

Frame stay, solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » **Inside/outside:** Threaded joint easy to release.

Rolling arrangement | Cable carrier with integrated roller

KR [mm]	H [mm]	G0 module RKR	L_B [mm]	U_B [mm]	q_z max [kg/m]
250	351	600	1840	1030	100
310	351	600	2200	1230	100
360	351	600	2520	1400	90
500	351	600	3410	1880	75

Speed
up to 10 m/s

Acceleration
up to 50 m/s²

Travel length
up to 1500 m

Additional load
up to 100 kg/m

The rolling cable carrier must be guided in a channel.
See p. 866.

The G0 module mounted on the driver is a defined sequence of 6 adapted KR/RKR link plates.

PROTUM®
series

K
series

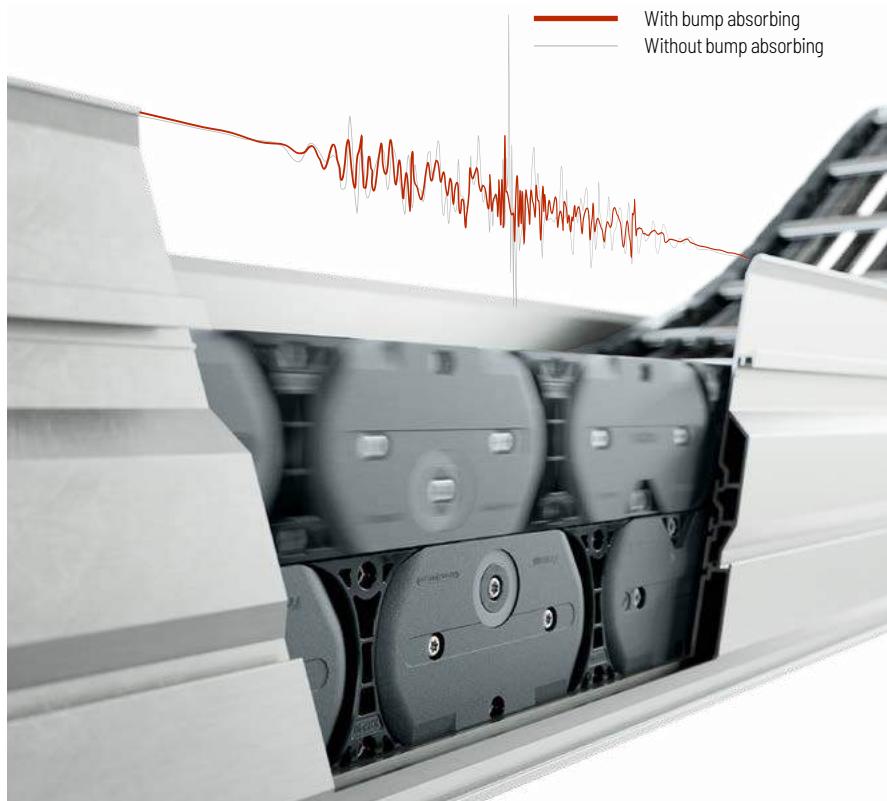
UNIFLEX
Advanced
series

M
series

TKHP®
series

XL
series

QUANTUM®
series


TKR
series

TKA
series

UAT
series

Our technical support can provide help for rolling arrangements:
technik@kabelschlepp.de

With bump absorbing
Without bump absorbing

PROTUM® series

K series

UNIFLEX Advanced series

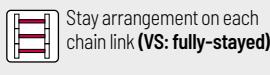
M series

TKHP® series

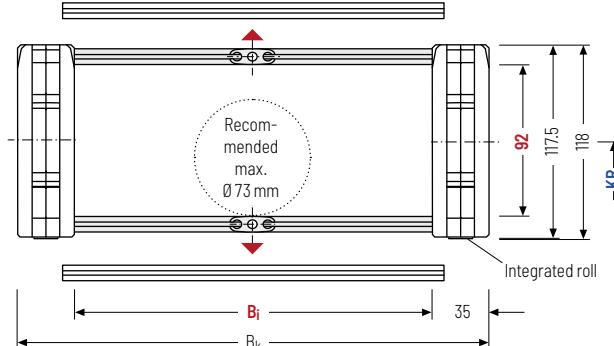
XL series

QUANTUM® series

TKR series


TKA series

UAT series


Aluminum stay RMF -

frame stay solid

- Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- Available customized in **1 mm grid**.
- Inside/outside:** Threaded joint easy to release.

1mm B: 100 – 800 mm
in **1mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k = \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch h for odd number of chain links

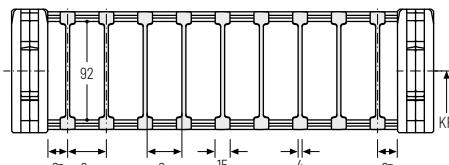
h_i [mm]	h_G [mm]	h_{G'} [mm]	B_i [mm]*	B_k [mm]	KR [mm]	q_k [kg/m]
92	117.5	118	100 – 800	B _i + 70	250	310 360 500** 10.37 – 17.47

* in 1mm width sections ** When using this KR please contact our technical support.

Order example

TKHP90-R Type . **400** B_i [mm] . **RMF** Stay variant . **310** KR [mm] - **2700** L_k [mm] . **VS** Stay arrangement

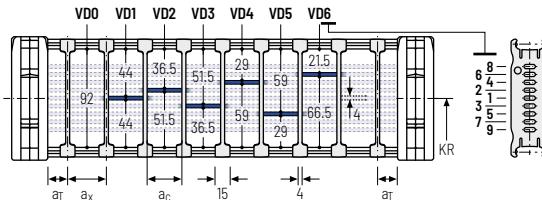
Divider systems

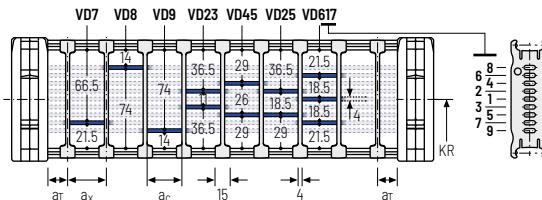

As a standard, the divider system is mounted on every 2nd chain link on the inside plate.

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (**version A**).

For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (**version B**).

Divider system TSO without height separation


Vers.	Δt min [mm]	Δx min [mm]	Δc min [mm]	Δx grid [mm]	Δt min
A	7.5	15	11	-	-
B	10	15	11	5	-


The dividers can be moved within the cross section (version A) or fixed (version B).

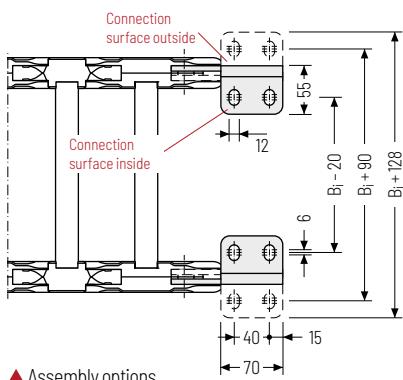
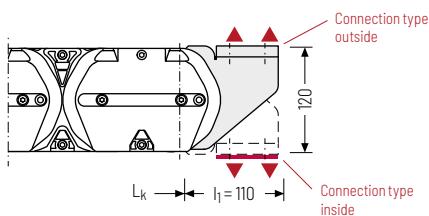
Divider system TS1 with continuous height separation

Vers.	Δt min [mm]	Δx min [mm]	Δc min [mm]	Δx grid [mm]	ΔT min
A	7.5	15	11	-	-
B	10	15	11	5	-

The dividers can be moved within the cross section (version A) or fixed (version B).

Order example

TS1 . A . 3 - VD1
 ...
 - VD3

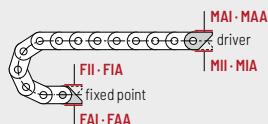


Divider system Version n_T Height separation

Please state the designation of the divider system (**TS0, TS1,...**), the version, and the number of dividers per cross section [n_T].

When using divider systems with height separation (TS1), please additionally state the position (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

End connectors - steel short (standard)

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.



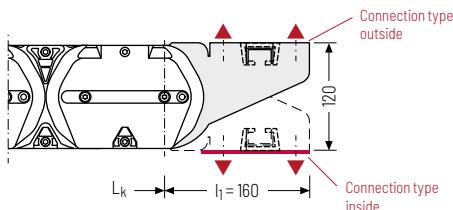
▲ Assembly options

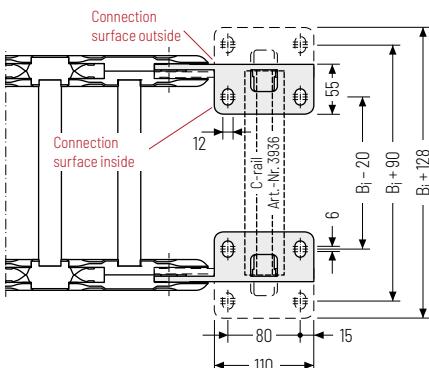
TKHP® series

Connection point	Connecting surface
F - fixed point	A - connecting surface outside
M - driver	I - connecting surface inside

XL series

Quantum® series


End connector	Connection point	Connection type	Connecting surface
Steel	F	A	I
Steel	M	A	I


We recommend the use of strain reliefs at the driver and fixed point. See from p. 924.

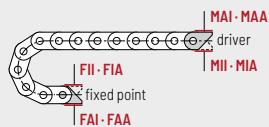
End connectors LF - steel long

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Use only with C-rail.

▲ Assembly options

Connection point


F - fixed point
M - driver

Connecting surface

A - connecting surface outside
I - connecting surface inside

Connection type

A - threaded joint outside (standard)
I - threaded joint inside

Order example

	Steel LF	F	A	I
	End connector	Connection point	Connection type	Connecting surface

PROTUM® series

K series

UNIFLEX Advanced series

M series

TKHP® series

XL series

QUANTUM® series

TKR series

TKA series

UAT series

Additional product information online

Installation instructions, etc.:
Additional info via your smartphone or
check online at
[tsubaki-kabelschlepp.com/
downloads](http://tsubaki-kabelschlepp.com/downloads)

Configure your cable carrier here:
online-engineer.de